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Abstract—1In the present work, we propose an active tac-
tile exploration framework to obtain a surface model of an
unknown object utilizing multiple contacts simultaneously. To
incorporate these multiple contacts, the exploration strategy is
based on the differential entropy of the underlying Gaussian
process implicit surface model, which formalizes the exploration
with multiple contacts within an information theoretic context
and additionally allows for nonmyopic multi-step planning. In
contrast to many previous approaches, the robot continuously
slides along the surface with its end-effectors to gather the
tactile stimuli, instead of touching it at discrete locations. This
is realized by closely integrating the surface model into the
compliant controller framework. Furthermore, we extend our
recently proposed sliding based tactile exploration approach
to handle non-convex objects. In the experiments, it is shown
that multiple contacts simultaneously leads to a more efficient
exploration of complex, non-convex objects, not only in terms
of time, but also with respect to the total moved distance of all
end-effectors. Finally, we demonstrate our methodology with a
real PR2 robot that explores an object with both of its arms.

I. INTRODUCTION

Tactile perception plays a central role in generating robust-
ness and dexterity when interacting with the environment
[1]. By the sense of touch, manifold information like the
texture, compliance [2], weight, geometric shape of objects
etc. can be perceived, which allows humans and robots to
recognize objects rapidly [3] and increases manipulation
capabilities [4], [5]. Realizing tactile perception in robotics
is challenging both from a sensory and control point of
view [6]. In addition, since tactile perception only provides
local information at contact locations, an active exploration
strategy is required to gather the sensor stimuli.

In particular, knowledge about the shape of an object is
important for manipulations such as grasping. The problem
of active tactile exploration to obtain a shape model of an
unknown object has been considered extensively in previous
work, e.g., [7], [4], [8]. These active tactile exploration ap-
proaches, however, are mainly based on iteratively selecting
discrete locations where the robot should touch the object to
improve an underlying model of the surface, which leads to
inefficient touch and retract motions, where the robot moves
away from the object after each touch.

To overcome this problem, we recently proposed an ac-
tive learning framework that queries exploration paths [9].
By sliding over the unknown surface along these paths,
the exploration not only turned out to be more efficient,
maintaining the contact during the exploration additionally
reduces the uncertainty about the unknown object.
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(b) Learned surface model. Total
travel path length 37 m.

(a) True object, end-effectors and explo-
ration paths after 9 m total travel.

Fig. 1. Exploration of a dumbbell shaped object with four end-effectors.

However, in [9], the experimental setup predominantly
considered convex objects. Furthermore, the exploration cri-
teria was developed for a single end-effector only. In the
present work we address both non-convexity and exploration
with multiple end-effectors at the same time.

When using Gaussian processes to model implicit surfaces
to reconstruct the object shape from a tactile point cloud, a
natural choice is to use the variance of the GP to base the
exploration strategy on, as done, for example, in [9], [4], [8].

However, as we show in the experiments in Sec. VII-B,
if multiple end-effectors are employed simultaneously, using
the variance could lead to unfavorable exploration behavior.
The reason for this is that for a single end-effector, the
exploration can be seen as a sequential decision process,
in which one observation is added sequentially. Therefore,
under some assumptions, due to the submodularity of the
information gain, a greedy learning strategy, which leads
to maximizing the variance of the GP, is close to optimal
[10]. In contrast, for an exploration with multiple contacts,
multiple observations have to be chosen simultaneously in
realtime, which means that the greedy argument relying on
the sequential nature of the problem does not hold anymore.

Therefore, we approach this problem in a more fundamen-
tal way by directly considering the entropy of the Gaussian
process surface model as the exploration criteria. This not
only formally deals with multiple contacts simultaneously
in an information theoretic context, but additionally also
enables nonmyopic multi-step planning in the context of
sliding based tactile exploration.

Sliding along an unknown surface inherently requires a
compliant control framework. To this end, we extend the
framework we proposed in [9] to multiple end-effectors.

To summarize our main contributions

o Continuous tactile exploration with multiple contacts

within an information theoretic context.

o Generalization of [9] to non-convex objects.

o (Nonmyopic) multi-step exploration planning.

The main contribution of our work, the formalization of an
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exploration strategy for multiple contacts, is presented in
Sec. IV, the extension to non-convex objects in Sec. VL
The background about Gaussian implicit surface models is
given in Sec. III and the controller framework is described
in Sec. V. Finally in Sec. VII, we demonstrate our approach
in simulation and with the real PR2 robot.

II. RELATED WORK
A. Active Tactile Exploration

As mentioned in the introduction, many approaches to
tactile shape exploration in the context of active learning have
been proposed that touch the unknown object at uncertain
locations. Dragiev et al. proposed in [7] to use Gaussian
processes (GPs) to reconstruct the shape of the object as an
implicit surface and introduced in [4] the idea of basing the
exploration on the variance of this GP model to guide the
robot to most uncertain locations of the model.

Some authors [11], [12] also consider how visual data can
serve as a prior model of the surface which is then actively
improved by touching the object where the prior model has
the least certainty.

Ottenhaus et al. [13] address one of the issues we identify
with touch probing, namely inefficient movements, by taking
the path cost into account when selecting the next, still
discrete, touch location.

Instead of representing the shape as an implicit surface,
Yi et al. [14] and Jamali et al. [8] model the height of an
object over a rectangular space. A disadvantage is that many
real-world 3D object cannot be represented as height maps
and that the exploration area must be specified beforehand.

Apart from our previous work [9], Rosales et al. [15]
are the only ones we know of who consider sliding based
exploration within an active learning framework. An inter-
esting aspect of their work is that the object is hold by one
hand, such that the other end-effector can touch it from other
sides. However, they do not realize the sliding variant on the
real robot, due to the lack of a suitable control framework.
Therefore, most of their experiments are limited to touch
probing as well. Such a controller that is closely coupled
with the surface estimation is a crucial aspect of our work
to enable the robot to slide over the unknown object.

The work of Lepora et al. [16] differs from the ones
mentioned so far in the way that they explore by actively fol-
lowing an edge of the object. A key component is the sensor
they developed, which is able to detect edges. However, their
approach is limited to only two dimensional, planar objects.

B. Tactile Exploration with Multiple Contacts

The methodologies discussed in the last paragraph have
been developed for a single contact point/end-effector only.
Sommer et al. [17] and Bierbaum et al. [18] consider tactile
exploration with multiple fingers of a robotic hand and there-
fore multiple contacts. These approaches, however, do not
derive their exploration strategies from information theoretic
criteria. For example, in [17], the exploration targets are
specified beforehand manually. While suitable for multiple
contacts on a hand, these methods are also only developed
for exploration with a single robotic arm.

C. Active Decision Planning / Active Learning

Apart from tactile exploration, active learning methodolo-
gies play an important role in other areas like field robotics or
machine learning [19], [10], [20]. In field robotics, informa-
tion efficient path planning is important since a robot often
has to travel long distances [21], [22]. However, in this area,
robots usually do not have to deal with unknown constraints
like finding or maintaining the contact with an object.

Research in so-called Bayesian optimization, which is
suitable for robotic applications [23] due to its sample
efficiency, also focuses on active decision making to reason
about the minimum of a black-box function. But as we
mentioned in the introduction, the methods of Bayesian
optimization cannot directly be transferred to our problem,
because exploration with multiple contacts simultaneously is
not a sequential decision process.

In summary, existing approaches either perform touch
probing, consider single contacts/end-effectors only or do
not derive the exploration from active learning principles.
To our knowledge, the present work is the first to formalize
sliding based active tactile exploration with multiple contacts
at the same time and multi-step planning from an information
theoretic point of view as well as realizing it on the real robot
through a compliant controller framework.

III. GAUSSIAN PROCESS IMPLICIT SURFACES

In this work, we assume that the robot has p € N
end-effectors, which are equipped with tactile sensors that
measure the locations x; € R3® where the end-effectors
are in contact with an object. If there is no contact on an
end-effector, the center location of this end-effector is used
as x;. During the whole exploration process, this data is
collected with a certain sampling rate in form of the tactile
point cloud 9 = {(x;,¢;)} 4, where ¢; = 0 if there is
contact at x;, otherwise ¢; = 1. In case of multiple contacts
at one end-effector, all observations are added. Based on
this dataset, an implicit surface model is constructed with
Gaussian processes (GPs), as proposed by [7] and [24]. For
a positive definite kernel k£ : R? x R?> — R and a constant
prior mean m € R, this GP models the probability of the
implicit surface function F' conditioned on the tactile data as
P(F(x)|2) = N(F(x)|pr(x),Vr(x)) with mean function
pr(x) = m+ k(x)"G™1 (Y — m) and variance Vp(x) =
k(x,x) — k(x)TG ™ k(x) with k(x) = (k(x,x;))i,, G =
wa + O'QIw, wa = (k}(Xi,Xj));U:’lﬁjzl, Y = ( b
The surface is then approximated as the zero level set of
the GP mean function, i.e. S ~ {x € R3|up(x) = 0}. The
choice m = 1 incorporates the prior knowledge that most
of the R3 space does not contain an object [9], [7]. Instead
of the often used squared exponential kernel, we choose the
inverse-multiquadric kernel with length scale | € R, which
we observed produces more favorable implicit surfaces even
for small length scales without producing holes in them [9].

Ci)i:l'

IV. ACTIVE MULTI-CONTACT EXPLORATION
FRAMEWORK

As discussed in the introduction and as we show in the
experiments in Sec. VII-B, naively extending exploration



strategies based on the variance to multiple end-effectors si-
multaneously could lead to unfavorable exploration behavior.
Therefore, we approach this problem in a more fundamental
way. We first describe an information theoretic exploration
objective suitable for multiple contacts, which is then turned
into a path based exploration strategy.

As common in probabilistic modeling, the (differential)
entropy of a random variable can be used to derive a notion
of the information gained when adding new observations.
The differential entropy of the GP implicit surface model
with dataset 2 = {(x;,¢;)}* is given by

h2) = % log ((2me)" det (G(2))) . (1)

When adding new contact observations at locations X1.,, we
are interested in the new entropy h(Z U {(x,¢)1.p}), which
involves the kernel matrix G, € R(WFP)X(W+P) after adding
the contact observations X1,

G K (Xl. )
G p) = WPATHP 2
p(X1.p) (pr@(l:p) Kpp(xlzp) +021p 2
with Ky = (k(x;,%;)),27 -, € RY*P, where x; are
the old and x; the new observations (K, K,, analog).
Ignoring irrelevant constants and factors, the quantity we are
interested in is therefore

H(Xliz)) = log (det (Gp(xlrp))) . 3)

To calculate the determinant term efficiently, we utilize block
Cholesky decompositions. Given the Cholesky decomposi-
tions L = chol(G) € R*** and N(x1.,) = chol(M(x1.;)),
the determinant of the new kernel matrix can be obtained as

HL Hle,, )

where with A(x1.,) = Lflep(xl;p) € Rwxp
M(x1.) = Kpp(x1.) + %L, — A(x1) T A(x1). (5)

Inserting this into (3) and again dropping irrelevant constant
factors, leads to the exploration objective

Z log chol

which can be interpreted as the information gained about the
shape of the unknown object when observing its surface at
X1.p Simultaneously.

Based on this objective, the exploration strategy can be
derived. For each of the p current contact points the idea is
to find 7' € N subsequent on-surface points that maximize
(6). To obtain sliding paths, those points are constrained to
be o € R apart from their predecessors. This is formalized
in the central Active Exploration Optimization Problem

det (Gp(x1:p)

Xl:p))ii) ) (6)

le

max H(Xlzp,lzT) (73)
X1:p,1:T

st pup(xi4) =0 Vizt1,...p Vi=1,...7 (7b)

%, — Xz‘,t—1|\§ =a? Vo1 p Veer.r (70

Xi0 = X; Viz1,.p (7d)

In the following, we discuss a one step (1" = 1) and multi
step (1" > 1) solution. For both cases, the exploration criteria
(6) has to be differentiated. The derivative with respect to the
j-th contact point, j = 1,...,p, is

86 le ZZNle

i=1 k<4

Xl:p)i_kl

[81k(xj7><k) - (G_lli(xk))Tg’*(Xj) (®)

The derivation of this compact looking result is given in the
appendix. The derivative of the involved Cholesky decom-
position can be obtained with the results presented in [25].

1) One Step Solution: If T = 1, i.e. only one step is
planned ahead for each end-effector simultaneously, then the
solution to (7) can be approximated efficiently. Linearizing
both the objective (7a) and the on-surface constraint (7b) at
the current contact positions Xi.,, the new position reference
as the solution of (7) for the i-th end-effector is given by
Py, (Xz) giH(xl p)

ref

X =x; +a = ©
P () H (1) |
with the tangent space projector
P, (x) =I3 — np(x)np(x)T. (10)

The term np(x)? = %/LF(X)/ ||8%/LF(X)H is the surface

normal at x, estimated from the GP model. In the case of
a single contact point (p = 1), (9) is equivalent to Eq. (28)
of [9]. One can see that the coupling between the multiple
end-effectors enters in 86 H(x1.). The computational com-
plexity of this one step solution is O(w?p+p®+wp?), which
basically is O(w?p), since the number of contact points p is
usually much smaller than the observed tactile observations
w. Comparing this to the complexity of calculating the
gradient of the variance of the GP as in [9], it turns out
that one step planning with multiple contacts simultaneously
has the same asymptotic effort than a single contact only.
2) Multi Step Planning: If T > 1, then we use sequential
quadratic programming to solve (7). To address the non-
convexity of (7), the solver is restarted four times, initialized
with the one step solution and three other, randomly selected
directions in the tangent plane of each contact point.

V. CONTROLLER CONCEPT

Sliding over a priori unknown surfaces requires a com-
pliant controller framework that is closely coupled with the
current surface estimation. To achieve this, we develop a
task space controller, which tasks are parameterized directly
by the GP surface estimation. The following controller
framework is a sightly modified combination of [23] and [9].
The desired behavior of the robot with n joints is described
in terms of task maps ¢ : D C R® — R y = ¢(q)
that map the robot configuration q € D to a d-dim. space
like the position, which task map will be called ¢, or
orientation of an end-effector etc. Given desired references
y*f y* ¢ R? we define in that task space a linear
control law y* = K(y™ — ¢(q)) 4+ y* with gain matrix



K € R?9 as well as a matrix C € R?*¢ which specifies

how important this task space is for the controller. For each

of the p end-effectors, mainly two special task spaces L .
> ¢ = 1,...,p are necessary:

1) Maintaining Contact Task: A velocity reference in the
ID task space with map ¢} (q) = fn},Tqu)OS(q)
moves each end-effector towards the surface to main-
tain or re-establish the contact during the exploration.
Here, n%. = n%(q,x;,¢;) € R? is the (normalized)
surface normal estimation. In this work, the robots have
ball-shaped end-effectors, which allows the estimation
of the surface normal via the contact location x;. If
there is no contact, then the normalized gradient of
the GP mean function is used to guide the end-effector
back to the object to re-establish the contact, i.e.

¢}i305((1)—xi
H ¢fms (a)—x;

Tz hr (6)0s(a))
|55 1 (D0 (@)

if contact, i.e. ¢; =0

(1)

ny =
otherwise

This normal estimation is also used in the tangent space
projector (10) for the one step exploration strategy (9).

2) Moving Task: In order to slide to the references x; ;,
a special position task ¢, for the i-th end-effector is
utilized with importance matrix

G000 = V(np) AV (nf) " € B0 (12)

consisting of the orthogonal matrix of eigenvectors
V(nk) = (nk ti(nk) ta(n%)) e R¥? (13)

and eigenvalues A; = diag(0, B;, B;) € R3*3,
Bi € R, such that (t; L t2) L n%. This ensures that
the end-effector can move in the tangent space at its
current contact position, without interfering with the
contact maintenance task.

Based on those (and additional) M task maps and their
references/parameters, the corresponding reference in the
state space of the robot is then found via

M
miing ‘
4=

2

dila) - i |

(14)
with solution
M
Ao = A7)0 30.C (K (v = 0il@) +377) (19)
i=1

where A = Z?il Jg;CiJ@ and Js, € R%*™ js the
Jacobian of ¢; at the current robot configuration q. Singu-
larity robustness is achieved via a regularizing posture task
$res(q) = q with yIef = q, yiop = 0.

To translate this reference to motor commands on the real
robot, we extend the idea we proposed in [9] to multiple

end-effectors. Starting from a joint space PD control law
u= KP (qref - q) + Ky (Qref - q) + ur (16)

with joint space stiffness Kp € R™™ and damping matrix
K, € R™ ™, the goal is that the end-effectors are compliant

in the task spaces (bilF, i.e. in the direction of the surface,
in order to safe- and robustly slide over the object. This is
realized by first using a hand-tuned diagonal joint stiffness
matrix KP**°, which is modified K, = SK}**°S with
-1

S=1,-T (TTT> 7 (17)
to generate compliance in the space spanned by the columns
of T = (p, p,) € R"*P. These are given by

p; = Jgi. (@) nf, (18)

such that compliance in the direction of the surface normal
estimation n%, at each end-effector is accomplished. The last
important quantity uy in (16) comes from an additional limit
force controller, which we proposed in [23], that limits the
interaction force to reduce friction and to increase safety.

VI. HANDLING NON-CONVEX OBJECTS

So far the derivation of the exploration strategy and the
control framework assumed that the number of contacts is
equal to the number p of end-effectors. When exploring
complex objects, it could, however, happen that there are
multiple contact points on a single end-effector. Let C; C R?
be the set of all contact positions on the i-th end-effector.
Then the contact location x; for the exploration strategy and
the task maps for the controller is selected by

x; = argmax Vp(x).
x€eC;

19)

This way, if for example an end-effector moves into a
corner leading to multiple contacts, the point with highest
uncertainty is chosen, which resolves the non-convexity.

VII. EXPERIMENTS

To focus on the exploration strategy, for the experiments
performed in Sec. VII-A, -B, -C the robot consisted of a
different number p of independent ball-shaped end-effectors
that can translate and rotate arbitrarily, i.e. n = 6 - p.
In Sec. VII-D, we apply the proposed method to both a
real and simulated PR2 robot, which has two arms. The
hyperparameters for all experiments were o = (.01 m,
l = 0.15, ¢ = 0.3. In all surface plots, the color on the
surface indicates uncertainty, red high, blue low. Black points
are on-surface observations, red off-surface ones.

A. Influence of the Number of Contacts/End-Effectors

The experimental setup is shown in Fig. 1a. The unknown
object has a dumbbell like shape with outer dimensions of 40
x 40 x 112 cm. In Fig. 2c, the evolution of the mean surface
error over time for a single, two and four end-effectors is
shown. Whereas it may not be surprising that more contact
points at the same time lead to a faster exploration, looking
at Fig. 2d, the exploration with multiple end-effectors is even
more efficient when compared by the total summed traveled
path of all end-effectors (meaning also the same number
of contact observations). This can be explained by the fact
that using multiple end-effectors, the exploration is spread
more evenly on the object, as visualized in Fig. 2a and 2b,
where the surface reconstruction is shown after 5 m total



(a) One end-effector. Surface model (b) Four end-effectors. Surface model
after 5 m exploration path in total. after 5 m exploration path in total.
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Fig. 3. Comparison between the proposed exploration strategy that is

based on entropy and a variance based approach. Four end-effectors, same
dumbbell object as shown in Fig. 1.

exploration path with one and four end-effectors. The final
learned surface explored with four end-effectors after a total
of 37 m travel path is visualized in Fig. 1b.

B. Entropy vs. Variance

One could argue, especially if the contact points are far
away from each other, that basing the exploration on the
gradient of the variance of the GP as in [9] should be
sufficient. In this experiment, we show that this is not the
case. The setup is the same as in Sec. VII-A, i.e. same
dumbbell shaped object, four end-effectors (see Fig. 1a). As
can be seen in Fig. 3a, the maximum surface error when
using the variance is much larger than with the proposed
entropy criteria. The reason for this is that with the variance,
two of the four end-effectors moved in the same direction,
as shown in Fig. 3c, therefore, they both explored the same
part of the object, while with the entropy strategy (Fig. 3b),
the end-effectors moved in opposite directions. For simpler
objects like a box, however, we still observed a difference,
but less significant as for this dumbbell shape like object.

0.1

(b) Surface after 4.7 m travel

0.05 with one step planning.

Mean surface error [m]

0 | |
0 5 10 15

Traveled distance [m]

(c) Surface after 4.7 m travel

(a) Max surface error over total path. with multi step planning.

Fig. 4. Comparison between one step exploration planning (7" = 1) and
multi step (1" = 3) with two end-effectors. Box object (40 x 40 x 20 cm).

C. Multi-Step Predictions

Fig. 4a shows that even for a simpler object like a box as
used in this experiment, multi step planning (in this case
three steps, T = 3) is more efficient than the one step
solution (7" = 1). Comparing the surface model after 4.7 m
total travel length, one can see that the three step planning
strategy already looks like a box (Fig. 4c), whereas with
the one step solution, the bottom is still round (Fig. 4b).
However, it has to be clearly stated that solving (7) for p = 2,
T = 3 could not be done in realtime, compared to the one
step multi contact solution (Sec. IV-.1), whose computation
time for the considered task is neglectable.

D. PR2 Robot

In Fig. 5, the exploration of a box shaped object with a
simulated PR2 robot with two end-effectors (one on each
arm) is shown. The dimensions of the object are 28 x 54 x
12 cm. Fig. 6 presents the proposed formalism with a real
PR2 robot exploring a salad bowl (30 cm diameter) with
both arms simultaneously. The experimental setup is similar
to the one of [9], in which the same object is explored,
but with only one end-effector. Since the end-effectors are
not equipped with contact location sensors, whether the end-
effector is in contact or not is inferred based on force-torque
measurements in the wrists of the PR2. The surface normal
is therefore always estimated based on the GP surface model.

In contrast to the experiments of the last paragraphs,
the end-effectors of the PR2 cannot move arbitrarily in
space. In order to account for those kinematic limits and
to prevent that the two arms could interlock each other, the
optimization problem (7) is modified by including a function
P:R3¥PT 4 R, Pe (! that acts like a potential

x?:lai(T H(Xlzp,lzT) - P(xltp,lzT) (2021)
st (7b), (7c), (7d), (20b)

where P is a quadratically increasing function if x; ; is below
a certain height or if an arm leaves its part of the body.
Otherwise, P is zero. This way, the two arms stay mostly
on their side of the body, which prevents the interlocking.
Furthermore, a joint limit task is added to the controller, such
that the robot does not try to explore outside its reachable
limits. In Fig. 7, it is shown that both in simulation and with
the real robot, the exploration with two arms simultaneously
is faster in terms of mean surface error reduction than with



Fig. 5. Dual arm object exploration with simulated PR2 robot. Right:
learned surface model after a total of 7 m traveled path.

Fig. 6. Dual arm object exploration with real PR2 robot. Right: learned
surface model after a total of 2.3 m exploration path.
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Fig. 7. Comparison between exploration with one and two arms with
respect to the mean surface error. Simulation and with real PR2 robot.

w

a single end-effector only. Note that for the real salad bowl
object we do not have the ground truth surface model and
therefore, in order to allow for a fair comparison, the surface
error in Fig. 7b is calculated against the mean of the two
surface estimations (with one and two end-effectors) at the
end of their exploration. Another advantage of using multiple
arms is that the possible exploration range is larger. For
example, the object in the simulated experiment (Fig. 5) has
a small part that is unreachable if only one arm is used, but
it had no significant influence on the surface error.

VIII. CONCLUSION

We presented a novel formalism for the active tactile
exploration of non-convex objects with multiple contacts
simultaneously. It turned out that using more than one end-
effector at the same time leads to a more efficient exploration,
even when considering the total traveled path length of all
end-effectors. Furthermore, naively extending concepts based
on the variance of the GP to multiple contacts showed to
perform inferior than the proposed method that is based on
the entropy of the GP. While in principle the introduced
framework enables multi-step planning, which also leads to

an even more efficient exploration, the computational effort
in our current implementation is not suitable for realtime.
We belief that this work lays the formal basis for advanced
active tactile shape exploration solutions.

APPENDIX

Here we derive the derivatives (8) of the exploration
objective (6). For better readability, we abbreviate My; =
M(Xl p)kl: Nkl = N(Xl p)kl = ChOl(M(Xl p))kl Nkl iS
lower triangular. The term zgr~ denotes the derivative of
the ¢j-th entry of the Cholesky decomposmon of M with
respect to the kl-th entry in M. Nkl means the kl-th entry
of N1, Applying the chain rule to (6) gives

d 21 ONy; OMy,
8x le ZNizzaMkl an '

=1 "k I<k

21

Now with (11) of [25] the partial derivatives of the Cholesky
decomposition 881\1\/1123 can be obtained, which yields

(22)

The expression dy; is the Kronecker delta. Then after insert-
ing the derivative of (5), we arrive at

:Z Z ZNzklNzl %5]“[)

1<k

|:31k(Xj, Xl)§jk + 82k(xk, xj)djl

(K)(Xk)(sj‘l + I‘.',(Xl)(Sjk)T Giliﬂ(xj') .

0x; 23)

Here, 0; denotes the derivative of the kernel with respect to
its first argument, Oy to its second. Resolving some of the
sums via the Kronecker deltas yields

p
=D Y NN (1 - $6)

i=11<j
4 0
[alk(xj,xl) — h:(xl)TG 18Xjn(xj)]
+ZZN 1N1k: 5]’“)
i=1k>j
Te—1 O
{agk(xk,xj) —k(xk)' G n(xj)]. (24)
aX]‘

Since a kernel is symmetric, we have O1k(x,x') =

82k'(x’ x) and therefore
P

= Z Z G NG (U= 305) (14 1)
i=1k=1 =1

[aluxj,xk) — (G r(xp) "

0

Finally, since the inverse of a lower triangular matrix is lower
triangular, the result (8) follows.
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