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Active Inverse Model Learning with Error and Reachable Set Estimates

Danny Driess∗ Syn Schmitt† Marc Toussaint∗

Abstract— In this work, we propose a framework to learn
an inverse model of redundant systems. We address three
problems. By formalizing what it actually means to learn an
inverse model, we derive a method where the inverse model,
represented as a neural network, is learned by minimizing an
upper bound on the real performance error, which is provided
by a forward model (kernel regression or Gaussian process)
learned on the currently available data. Most machine learning
methods focus on learning the mapping of the function. For
inverse models, it is, however, crucial to know the reachable set
of the true forward model, since this becomes the domain of the
inverse. Therefore, we secondly propose a method to estimate
the reachable set of the system. Finally, we develop an active
exploration strategy that is based on maximizing a lower bound
on the true fill-distance to efficiently generate the data in the
high dimensional input space. A key feature of our method is
that the resulting learned inverse model provides error bounds
on its performance.

From an application point of view, this work is motivated by
learning to control musculoskeletal systems. In the experiments,
we show for both a simulated model of a human arm with
six muscles and a real muscle-driven robot that the proposed
method is able to learn the reachable set of these systems as
well as a policy that enables to accurately control the position.

I. INTRODUCTION

Models play a central role in robotics and other disciplines.
One can generally distinguish between forward models,
which describe how a system reacts to control inputs, and
inverse models, which predict the necessary control inputs
that lead to a desired system change. While forward models
are usually unique, in most interesting situations, there are
infinitely many inverse models for the same system, pro-
hibiting direct learning with standard regression techniques.
Therefore, obtaining an inverse model, both from an analyt-
ical and learning point of view, is challenging.

Biomechanical musculoskeletal systems are one instance
where this non-uniqueness of an inverse model occurs, since
there are multiple, at least two, redundant muscles that
drive one or even multiple joints. The complex, nonlinear
dynamics, delays, hidden states etc. make it difficult to
control muscle-driven systems with classical methods. The
properties of the muscles and their redundant antagonistic
setup lead to a certain intrinsic stability that is, in principle,
favorable for learning. However, this redundant muscle setup
is also the reason for the difficulties of learning an inverse
for such systems.

The non-uniqueness problem of learning inverse models
has extensively been studied in the context of inverse kine-
matics, e.g. [1], [2], [3], [4], [5], [6]. However, a crucial
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Fig. 1. Estimated reachable set and distribution of collected data points in
the end-effector space after 1200 iterations for simulated human arm model.

aspect missing in most existing approaches is to systemati-
cally and efficiently estimate the reachable set, i.e. to know
which parts of the workspace can be reached at all. This is
essential for several reasons: First, the inverse model is well-
defined only over the reachable set. Therefore, when defining
an objective for learning an inverse model, points outside the
reachable set should be neglected, which requires to have an
estimate of the reachable set. Secondly, in an active learning
setting, the aim should be to cover the domain of the inverse
model, which also requires to estimate the reachable set.

Therefore, the problem of inverse model learning and
reachable set estimation is inherently linked, should be
treated jointly and, in an active learning setting, performed
simultaneously. In the present work, we propose methods to
this end, where bounds on the real performance error are the
central piece to achieve all three aims:

First, by formalizing more rigorously what it actually
means to learn an inverse model, we derive a method where
the inverse model, represented as a neural network, is learned
by minimizing an upper bound on the real performance error.
This upper bound is provided by a forward model (kernel
or Gaussian process regression), which is trained on the
currently available data.

We secondly propose a method to estimate the reachable
set based on the derived error bound of the current learned
forward and inverse model. This estimated reachable set is
also efficient to compute.

Thirdly, we derive an active exploration strategy to effi-
ciently generate the training set of the forward model with the
goal of thereby improving the inverse model. This is realized
by maximizing a lower bound on the true fill-distance of
the real workspace (the domain of the inverse model),



which is again provided through the error estimate. This
strategy inherently trades-off exploration and exploitation
and explores in the low dimensional workspace instead of
the high dimensional control input space.

A key feature of the proposed framework is that the
learned inverse model provides guaranteed upper bounds
on its performance when applied to the real system. These
bounds are easy to compute and, as we will show in the
experiments, are also suitable in practice.
To summarize, our main contributions are
• Formalization of inverse model learning
• Estimation of reachable set
• Active exploration strategy
• Estimate (upper bound) of the real performance error of

the learned inverse model
The rest of the paper is organized as follows. After reviewing
related work in Sec. II, the background about the function ap-
proximator for the forward model is given in Sec. III, where
we also state an error estimate. The main methodology is
developed in Sec. IV. Experimental results with a simulated
human arm and a real muscle-driven robot as well as an
ablation study are presented in Sec. VI.

II. RELATED WORK

A. Learning Inverse Models

Many methods address the non-uniqueness of inverse
models specifically in the context of inverse kinematics. Sim-
ple regression methods are not applicable, since averaging
over multiple configurations that correspond to the same task
value leads to invalid solutions [1], [5]. One way to handle
this averaging is to weight the data samples according to
some objective [1], [3], [7]. For example, the authors of [1]
consider those samples as more important that are closer to a
homing position of the robot. In [8], it was shown that such
weightings do not perform well for musculoskeletal systems,
since the choice of a suitable weighting objective is unclear.

Another method to resolve the non-uniqueness is to first
learn a forward model, for which standard regression tech-
niques can be used [5]. The inverse itself is then obtained as a
right inverse to the learned forward model. This way, the re-
dundancy is resolved implicitly through the learned forward
model. While [5] considers one global inverse model, another
approach is to learn multiple paired forward and inverse
models [9], [6], [4]. The main idea of those approaches is that
each forward-inverse pair represents different, smaller parts
of the space. Depending on the current context, which could
be the current state for example, the responsibility of the
different inverse models is chosen. One disadvantage of most
of these methods is that the learning of the inverse model
does not take into account that the learned forward model
is imperfect. If the data for the forward model is sparse, as
we show in the experiments, this could lead to undesired
results. Speaking of data, most works also consider mainly
given datasets or specify the data generation manually.

Generating the data efficiently is, however, an important
problem for the success of an inverse learning method.
Due to the high dimensionality of the control input space,

dense sampling is prohibitive. To address this issue, several
authors propose to explore in the workspace/goal space
instead of the control input space [3], [10], [11], [8]. By
bootstrapping the iteratively learned inverse model, so-called
goal babbling approaches [3], [10], [8] showed to generate
the data to obtain an inverse model sample efficiently in
high dimensional control input spaces. A limitation of those
goal babbling methods is that either the exploration targets in
the goal space are manually specified or chosen heuristically
by knowing the true workspace. A different approach to
generating targets for the exploration in the goal space is
intrinsic motivation, for example by estimating the com-
petence progress [11], which also shows impressive results
for challenging tasks. These methods, however, also do not
systematically estimate the reachable set. The only work we
are aware of that deals with estimating the reachable set
for learning inverse models is [12]. However, there is no
representation of the reachable workspace which could be
computed easily and the exploration in one direction stops
if a heuristically chosen criterion indicates the end of the
workspace.

The present work is, to our knowledge, the first to sys-
tematically approach the estimation of the reachable set
from learned models in form of a representation that is also
computationally feasible to determine.

B. Active Learning in Robotics
Active learning deals with generating data in a most

informative manner. For example, Bayesian optimization
methods have successfully been applied to tuning controller
parameters for robotic applications [13], [14]. Most active
learning methods are derived under the assumption to be
able to sample the unknown function at a chosen location.
In the case of inverse model learning, when exploring in the
workspace to circumvent the high dimensionality of the input
space, it is not possible to query an arbitrary desired location
in the workspace, since this would require an already known
perfect inverse. In the present work, we therefore derive an
active learning principle for exploration in the workspace that
takes the imperfection of the inverse model into account.

C. Learning to Control Musculoskeletal Systems/Robots
Several authors consider learning controllers for pneumat-

ically driven robots [15], [16], [17], [8], [18], [19], [17]. In
[15] and [16] the redundancy problem is circumvented since
only a control for one of the antagonistic muscles is learned.

In [8] and [18] the non-uniqueness is resolved by only
learning a forward model. The actual inverse query is then
obtained by solving a non-convex optimization problem.
Both [8] and [18] include a term in the optimization objective
that ensures that the optimization problem stays close to the
collected data. In the present work, we derive a similar term
more rigorously. With respect to the data generation, in [8]
the targets in the workspace are specified manually, while in
[18] a preexisting controller is needed to generate the data.

III. KERNEL REGRESSION

An important part of this work is to learn a function with
the ability, under some assumptions, to estimate the error



between the true and the learned function. Kernel based
methods enable to derive such error estimates elegantly. In
the following, we provide background about kernel ridge
regression and derive an error bound in the regularized case,
which we have not seen in this form in the literature yet,
although it is a straightforward extension to known results.

A. Kernel Ridge Regression
Let k : U × U → R be a positive definite kernel for the

nonempty set U ⊂ Rm. Denote Hk with norm ‖ · ‖Hk
and

inner product 〈·, ·〉Hk
the reproducing kernel Hilbert space

(RKHS) associated with k. Assume that data is generated
by a function φ̂ : U → R, i.e. D1 = {(ui, xi)}ni=1, ui ∈ U ,
xi ∈ R, where xi = φ̂(ui). Kernel ridge regression with the
regularization parameter σ ≥ 0 is then defined by

min
φ∈Hk

n∑
i=1

|xi − φ(ui)|2 + σ2 ‖φ‖2Hk
(1)

with the unique solution

φ(u) = xTG−1κ(u), (2)

where G = K + σ2I ∈ Rn×n, K = (k(ui,uj))
n×n
i,j=1, x =

(xi)
n
i=1 ∈ Rn, κ(u) = (k(ui,u))

n
i=1 ∈ Rn. Readers familiar

with Gaussian process regression see the similarity to the
mean function.

B. Error Estimate
Assume that the true function φ̂ : U → R fulfills φ̂ ∈ Hk

and ‖φ̂‖Hk
<∞, then for all u ∈ U it holds∣∣∣φ̂(u)− φ(u)∣∣∣ ≤ ∥∥∥φ̂∥∥∥

Hk

s(u), (3)

where

s(u) =

√
k(u,u)− κ(u)TG−1κ(u)− σ2κ(u)TG−2κ(u).

(4)

The proof, which follows a similar idea as in [20], where
the case of σ = 0 is considered, has to be omitted due to
space constraints. Note that since G−2 is positive definite,
this bound is tighter than known results that are based on
the variance estimate of the Gaussian process.

IV. ACTIVE INVERSE MODEL LEARNING

In this section, we first precisely state what we consider
as learning an inverse model. We then identify the involved
challenges, for which we provide solutions.

A. Problem Definition
Let U ⊂ Rm be the set of control inputs, e.g. muscle

stimulations as considered here in this work, and X ⊂ Rd be
the so-called reachable set or the workspace. Further, assume
that U is compact and that d ≤ m, which corresponds to
redundancy. The true system

φ̂ : U → X (5)

is a function that statically and uniquely maps a control input
u ∈ U to a point x ∈ X in the reachable set. In the context of
musculoskeletal systems as discussed in Sec. V, φ̂ describes

the equilibrium configuration x that is reached for a vector
of static muscle stimulations u.

The goal of this work is to learn both the reachable set X
as well as an inverse model

π : X → U (6)

such that

∀x∈X : φ̂(π(x)) = x. (7)

By setting X = φ̂(U), such a (right) inverse automatically
exists, but due to the redundancy, there are typically infinitely
many of them. To represent the inverse model, we chose a
standard feedforward neural network with continuous activa-
tion functions and an output layer that ensures that π maps
into U . Therefore, π ∈ C(X ,U). If we further assume that
the true forward model is continuous as well and X does not
contain isolated points, condition (7) is equivalent to∫

X

∥∥∥φ̂(π(x))− x
∥∥∥2 dx = 0. (8)

However, inverses are in general not continuous, which
means that (8) cannot be fulfilled exactly for a continuous
class of π. Therefore, ideally, the parameters w of the inverse
model, i.e. the weights of the neural network, would be
chosen to optimize

min
w∈W

∫
X

∥∥∥φ̂(π(x;w))− x
∥∥∥2 dx. (9)

Unfortunately, we neither assume to know X , nor φ̂ is
available in terms of closed form expressions. The only way
to acquire knowledge about the system is to evaluate φ̂(u)
for a specific control input. Therefore, (9) is of little use.
To overcome this, the first idea would be to replace the true
forward model with a learned surrogate φ. If the dataset
is rich enough, one could set X ≈ φ(U) and replace φ̂
in (9) with the learned φ. However, evaluating φ̂(u) could
involve a costly numerical simulation or even a real robot
experiment, which, together with the high dimensionality of
the control input space, prohibits dense sampling in U to
build a rich enough dataset for learning φ everywhere in U .
Since the optimization problem (9) treats the forward model
as exact, especially if φ is learned based on little data, an
unreasonable inverse could be learned. Indeed, as we will
empirically show in the experiments in Sec. VI-B.1, simply
using (9) with an iteratively learned φ is not sufficient and
leads to bad performance for a learned φ from little data.

To summarize, learning an inverse model requires

• A surrogate objective to formulate the inverse learning
problem in a way that takes into account that the
forward model is learned from little data.

• An exploration strategy to efficiently generate the data
in the high dimensional input space to learn the forward
model with the aim to reduce the inverse model’s error.

• A way to estimate the reachable set X .



B. Learning the Inverse Model π
During the learning process, the dataset D =

{(ui,xi)}ni=1, consisting of control inputs ui ∈ U that
lead to the configuration xi ∈ X , is collected. Based on
this data, the forward model φ : U → X , φ(u) =
(φ1(u), . . . , φd(u))

T is learned, where each component φi is
a (separate) solution of the kernel ridge regression problem
(1) with (own) reproducing kernel Hilbert space Hki . Given
this learned forward model, the true reaching error at x ∈ X
for an inverse model π can be estimated as∥∥∥φ̂(π(x))−x∥∥∥=∥∥∥φ̂(π(x))−φ(π(x)) + φ(π(x))−x

∥∥∥
≤‖φ(π(x))−x‖+

∥∥∥φ̂(π(x))−φ(π(x))∥∥∥.
(10)

The first term describes how well the inverse model is a
right inverse to the learned forward model. The second term
is the error between the true and the learned forward model
at π(x). Under the assumption that each component φ̂i of
the true forward model φ̂ has a bounded RKHS norm in
Hki , using the kernel ridge regression error estimate (3) for
each pair φ̂i, φi, the true reaching error in the X space for
an arbitrary inverse π can be bound by∥∥∥φ̂(π(x))− x

∥∥∥ ≤ ε(x), (11)

where we define our error estimate as

ε(x) = ‖φ(π(x))− x‖+

√√√√ d∑
i=1

∥∥∥φ̂i∥∥∥2
Hki

si(π(x))2. (12)

Therefore, we have derived an upper bound on the quality
of the inverse model∫

X

∥∥∥φ̂(π(x))− x
∥∥∥2 dx ≤ ∫

X
ε(x)2 dx (13)

≤ 2

∫
X
‖φ(π(x))− x‖2 +

d∑
i=1

∥∥∥φ̂i∥∥∥2
Hki

si(π(x))
2 dx (14)

≤ 2

∫
X
‖φ(π(x))− x‖2 +

d∑
i=1

β2
i si(π(x))

2 dx (15)

that does not require the true forward model, except for an
upper bound

∥∥φ̂i∥∥Hki

≤ βi on its RKHS norm.
As discussed before, there are potentially infinitely many

inverse models. To have control over which inverse would
be learned, we introduce a positive, monotone function l :
U → R+, for example l(u) = ‖u‖2 would encourage to
learn inverses with low control inputs.

Plugging everything together, the inverse model is learned
by the optimization problem

min
w∈W

∫
X
‖φ(π(x;w))− x‖2 +

d∑
i=1

β2
i si(π(x;w))2

+ η l(π(x;w)) dx. (16)

η ≥ 0 is a trade-off parameter. Intuitively, the optimization
problem tries to find an inverse to the learned forward model,
while, which is expressed with the second term in this
objective, staying close to the data.

C. Estimating the Workspace X
The integral formulation (16) assumes to know the true

workspace X . While in some situations one might know X
a priori, in general, we would like to avoid this. Here, we
propose one way to estimate X based on the current learned
forward and inverse model, utilizing the error estimate.

It is clear that one cannot expect to estimate the reachable
set exactly. Instead, we define for an error certainty c > 0

X̂c =
{
x ∈ Rd : dist(x,X ) < c

}
(17)

as the true reachable set expanded by c. With this definition,
we consider as learning the reachable set as estimating X̂c.
Since φ̂(π(x)) ∈ X for every x ∈ Rd (where π can be
evaluated, which is Rd for a neural network), we have

dist(x,X )= inf
x′∈X
‖x′ − x‖ ≤

∥∥∥φ̂(π(x))− x
∥∥∥ ≤ ε(x), (18)

where we use our derived error estimate (12) of the inverse
model. Therefore, we propose to estimate the reachable set
with error certainty c > 0 as

Xc =
{
x ∈ Rd : ε(x) < c

}
, (19)

which, due to (18), automatically has the property

Xc ⊂ X̂c, (20)

meaning that Xc never overestimates the true X̂c. Since X
is assumed to be low dimensional, calculating Xc is also
feasible, as compared to evaluating φ(U) or even φ̂(U).

D. Exploration Strategy

As a final step, we discuss how the data for learning the
forward model can be collected in a sample efficient way.
The exploration strategy should select points such that they
become dense in the whole unknown workspace X . This can
be expressed in terms of the so-called fill-distance

max
x∈X

min
xi∈DX

‖x− xi‖, (21)

where DX = {xi}ni=1 is the x-part of the dataset D.
Intuitively, the fill-distance denotes the radius of the largest
ball with center in X that does not contain any already
sampled datapoint from DX . In our case, we define the true
fill-distance as

max
u∈U

(
min

xi∈DX

∥∥∥φ̂(u)− xi

∥∥∥) , (22)

which measures how large unexplored parts in the true X are.
Similar to the discussion in the last paragraphs, in contrast
to many other active learning methodologies, where one
can just query the unknown function at a desired location,
we cannot query a u such that φ̂(u) = x∗, where x∗

would maximize the fill-distance, since this would require an
already perfectly known inverse. Therefore, the goal of this
section is to derive a computationally feasible lower bound
on the true fill distance.



Based on the simple calculation

‖x− xi‖ =
∥∥∥x− φ̂(π(x)) + φ̂(π(x))− xi

∥∥∥ (23)

≤
∥∥∥x− φ̂(π(x))

∥∥∥+ ∥∥∥φ̂(π(x))− xi

∥∥∥ (24)

≤
∥∥∥φ̂(π(x))− xi

∥∥∥+ ε(x), (25)

where we have used our error estimate (12), a lower bound
on the true fill distance is

sup
x∈Rd

(
min

xi∈DX
‖x− xi‖ − ε(x)

)
(26)

≤ sup
x∈Rd

(
min

xi∈DX

∥∥∥φ̂(π(x))− xi

∥∥∥) (27)

≤ max
u∈U

(
min

xi∈DX

∥∥∥φ̂(u)− xi

∥∥∥) , (28)

since φ̂(π(Rd)) ⊆ φ̂(U). Let X be compact with X ⊆ X ⊂
Rd. Then, in each iteration, the next target is chosen as

x∗ = argmax
x∈X

(
min

xi∈DX
‖x− xi‖ − ε(x)

)
(29)

and u = π(x∗) is applied to the system. This exploration
strategy therefore chooses exploration targets in the low
dimensional X -space instead of the high dimensional control
input space and utilizes the current learned inverse model to
generate the data for the forward model. Note we assumed
here that π can be queried on Rd ⊃ X ⊇ X , which for usual
neural networks is always fulfilled.

E. Practical Remarks

In practice, calculating (16) with the estimated workspace
is computationally infeasible, since the integral over Xc can-
not be expressed in closed form. However, since we assume
that the workspace is low-dimensional, we can evaluate ε
on a d-dimensional grid. This gives a discretized version X̃c
of Xc. Especially in the beginning of the exploration, Xc
is often empty. Therefore, we include the already sampled
data points DX to the estimated workspace. This leads to the
optimization problem for the inverse model

min
w∈W

∑
x∈X̃c∪DX

(
‖φ(π(x;w))− x‖2 +

d∑
i=1

β2
i si(π(x;w))2

+ η l(π(x;w))

)
. (30)

In the exploration strategy objective (29), the new point
is found by optimizing over a sufficiently large compact
X ⊇ X to guarantee that (29) is well-defined. While the
derived lower bound (28) on the true fill-distance under the
made assumptions even holds on Rd, we found that the
robustness of the methodology in practice with imperfect
hyperparameters is increased if we constrain the exploration
optimization problem to search inside a trust region around
the already sampled data points, i.e. only those points that
have a maximum distance of γ from the data points are
considered in (29). Note that in most of our experiments, it
would still work without this trust region, but not as reliably.

Fig. 2. Left: Simulation model of human arm with elbow and shoulder joint.
Red lines are the two monoarticular shoulder muscle tendon units (MTUs),
orange the two biarticular ones and blue depicts the two monoarticular elbow
MTUs. Right: Real muscle-driven robot with two joints, articulated by five
pneumatic muscle spring units (MSUs).

To solve the max-min optimization problem of the explo-
ration strategy, we first sort DX into a nearest-neighbor tree.
Then (29) can be solved easily by grid evaluation. Compared
to the time required to run the simulations, i.e. querying φ̂,
and training the neural network, the computation time for
solving the exploration strategy optimization problem by this
method was neglectable in our experiments.

V. BIOMECHANICAL MODEL OF A HUMAN ARM

We briefly describe the used biomechanical models. For
details, refer to [8], where these models were introduced.

A biological movement apparatus is articulated by so-
called muscle-tendon-units (MTUs). Since muscles can only
actively contract, at least two muscles for each joint in an
antagonistic setup are required. As we have discussed in [8],
this redundant antagonistic setup, together with the charac-
teristic nonlinear force-length and force-velocity relations of
the MTUs, have the consequence that a vector of constant
muscle stimulations u ∈ U results in a specific equilibrium
configuration, where small perturbations are counteracted by
the passive visco-elastic properties of the MTU without the
need of control [8]. The true forward model φ̂ : U →
X for such a system therefore describes the equilibrium
configuration x ∈ X , e.g. the position of the arm, when
applying the constant muscle stimulation u ∈ U . The muscle
stimulation space is normalized, i.e. U = [0, 1]m. By using
a sigmoid output layer for the inverse model, π(Rd) ⊂ U is
automatically fulfilled.

A. Simulation Model

The simulation model (Fig. 2 left) consists of the upper
and lower arm, connected by the elbow and shoulder joint,
which are driven by m = 6 MTUs. For each joint, there are
two monoarticular MTUs. In addition, two biarticular MTUs
drive both joints. The MTU forces are calculated based on
an extended Hill-type muscle model from [21].

B. Real Bio-Inspired Robot

Our developed real bio-inspired robot arm (Fig. 2 right)
mimics the biological archetype. The two joints are ac-
tuated by five pneumatic muscles. Together with added
serial springs, these muscle-spring-units (MSUs) have similar
active and passive characteristics as MTUs. There are two



monoarticular MSUs for each joint and one biarticular MSU.
The control input u ∈ [0, 1]5 corresponds to pressures of 0
to 5 bar. Compared to the simulated arm model, the possible
motion range is much smaller, since the pneumatic muscles
have a limited stretch and contract capability.

VI. EXPERIMENTS

We show both in simulation and with a real robot that the
proposed method is able to accurately learn an inverse model
and its reachable set. A video attachment is also available.

Each data point is generated by applying the constant
muscle stimulation predicted by the current learned inverse
model for the target specified by the proposed exploration
strategy. The first 22 data points in simulation and 50 for
the real robot were sampled with noise according to [8].
The neural network for π consists of 2 hidden layers with
300 units and relu activation functions. After a data point
is added, the network is trained to optimize (30) for 30
episodes with stochastic gradient descent and a learning rate
of 0.0005. We used a Gaussian kernel for the forward model
with length-scale of 0.2. The bound on the RKHS norm of
the true forward model was βi = 2. Other hyperparameters
were σ = 0.001, η = 10−5, c = 0.02, γ = 0.1.

A. Simulated Human Arm Model

Fig. 3 shows the evolution of the learned reachable set as
well as the distribution of the collected data points in the X -
space. The error certainty value for the estimated reachable
set was c = 0.02, meaning that inside Xc, i.e. inside the
orange set in Fig. 1, 3, the inverse model estimates its real
reaching error to be smaller than 2 cm. In the beginning of
the procedure, the exploration strategy focuses on expanding
the reachable set. After only 150 data points (Fig. 3d),
the reachable set is nearly completely covered. Then, the
exploration strategy automatically focuses on improving the
model inside the already estimated reachable set. In Fig. 1,
the final result after 1200 collected points is visualized. One
can see that the estimated reachable set Xc matches the true
one X̂c closely and the data points are relatively uniformly
distributed, indicating that the exploration strategy is able to
closely match the true fill-distance.

In order to test the accuracy of the learned inverse model at
various stages of the exploration progress, after 100 collected
data points each, the point reaching performance is tested on
137 target points inside X . These target points and the actual
reached points after 1200 collected data points are shown in
Fig. 4a. The evolution of the actual error and its estimate
over the number of collected data points is shown in Fig.
4b. One can see that in the beginning the error estimate is a
bit more conservative, but in the end it is a tight upper bound.
The final reached mean error is 1.50 ± 0.42 mm, the error
estimate predicts 2.07±0.40 mm. The reported values are the
mean errors and standard deviations of 5 experiments started
from scratch with the same parameters but different random
seeds. In Fig. 4c, the trajectories of an out-of-center reaching
experiment is shown after only 150 collected data points. As
one can see, the actual reached positions are within the red
circles, which indicate the error estimate ε(x).

One cannot expect that the true forward model, i.e. the
musculoskeletal system, comes from the same RKHS as
the chosen kernel with its hyperparameters. Therefore, Xc
sometimes overestimates X̂c slightly. However, as seen both
by the estimated reachable set and the error estimate for
the point reaching evaluation, the assumptions are also in
practice reasonably well fulfilled, which make the error
bounds usable in practice, without the need for extensive
parameter tuning of βi. Note that the true reachable set is
also only an estimation, which neglects that the joint limits
are modeled in the simulator as soft constraints. Therefore,
there are some sampled points which are outside of X .

B. Ablation Study

In this experiment, we investigate the importance and
influence of the various parts of the proposed framework on
the point reaching performance. The point reaching targets
are the same as in Fig. 4a. Except for the part that is changed,
the rest of the methodology stays the same. All experiments
are repeated 5 times from scratch with same parameters, but
different random seeds.

1) Neglecting the Upper Bound: Here we consider what
happens if the inverse model is not learned by optimizing
the upper bound on the real performance, but only as an
inverse to the learned forward model. Technically, one can
think of setting βi = 0 in (16), which corresponds to treating
the learned forward model as perfect everywhere in U . All
other parts of the framework, i.e. the exploration strategy
and the reachable set estimate for the integral stay the same
and still use the error estimate. As one can see in Fig. 5a,
where the resulting point reaching performance is shown
for two different learning rates of the neural network, there
is nearly no learning progress at all and the error is very
high. The main reason for this is that there are large parts
of the reachable set which remain unexplored, since, when
neglecting the upper bound, the inverse model does not
have good extrapolation and hence exploration capabilities.
But also in explored parts of the workspace, the error is
considerably higher than if the upper bound is included.

2) Influence of Integral: Next we investigate the influence
of the value of c for estimating the reachable set for the
integral part in the objective as well as the case if there is
no integral at all and the inverse model is learned on the
observed data only. Fig. 5b visualizes the reached perfor-
mance error. As one can see, if c is decreased from 0.02 to
0.01, the error in the beginning is higher. The (empirical)
reason for this is that if c is larger, the model extrapolates
better. After about 500 data points, there is no statistically
relevant difference, since then mainly the exploration focuses
on the inside of Xc. However, if c is made too large (in this
case 0.05), the final reached error increases. This is caused
by the fact that for large c, Xc contains points that are too
far away from X and hence irritate the inverse learning. In
case the integral is neglected completely, the performance
significantly drops (about 3 times higher error).

3) Exploration Strategy Comparison: In Fig. 5c, different
exploration strategies, with and without the integral, are
compared to the proposed method. Random sampling in X
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Fig. 5. Ablation study: Influence of the various parts of the proposed method on the point reaching error

(orange and green) means uniform sampling in a sufficiently
large bounding box of X . Random in Xc means uniform
sampling in the current estimated reachable set. The simple
random sampling method in X has an about 4.1 times higher
error than the proposed method. This is due to the fact that
many targets are chosen outside the true reachable set, which
means that those points do not contribute to increasing the
performance of the inverse model.

With a final reached accuracy of 1.86±0.54 mm, random
sampling inside the estimated reachable set is competitive
in the end to the proposed strategy. One has to note that
through the estimated reachable set a similar effect as the
lower bound on the real fill-distance is achieved, since
both are derived based on the error estimate. The proposed
exploration strategy is, however, in the beginning faster than
random sampling in Xc.

For both random sampling methods, the performance
also significantly drops if no integral is considered. This
especially holds true for random sampling in X (7.1 times
higher error), since the integral helps for compensating areas
inside Xc where no data has been observed.

C. Real Muscle-Driven Robot

With the real robot, the goal of the inverse model is to
find pressure values to reach desired joint configurations.
Therefore, the X -space is the joint space of the robot. All
parameters are the same as in the simulated experiment,
except for the bound on the RKHS norm of the true forward
model specifically for the exploration strategy, which was
decreased to βi = 1. Fig. 6 shows the evolution of the learned
reachable set as well as the distribution of the collected data
points. Looking at the shape of the estimated reachable set
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at the end of the exploration after 651 collected data points
(Fig. 6d), one can see that for this system, the reachable joint
space set is not a rectangle as one might would expect.

The performance at the end of the exploration was eval-
uated on 100 joint configurations. In the shoulder joint the
mean error was 0.40±0.09◦, in the elbow 0.31±0.01◦ (mean
and standard deviation of three repeated experiments).

Note that while the true forward model for the simulated
human arm is state independent, due to hysteresis and friction
effects, the reported accuracy for the real system is only
valid when starting from the rest position as in training. To
investigate the decrease in performance, we selected 6 target
configurations that are reached from the rest position and
from the last configuration each. Here the error increases
from 0.47± 0.19◦ to 0.63± 0.33◦ in the shoulder and from
0.25± 0.14◦ to 0.46± 0.43◦ in the elbow joint.

VII. CONCLUSION

In the present work, we formalized inverse model learning
by optimizing an upper bound on the real performance
error. Including this upper bound in the inverse learning
objective turned out to be crucial. The proposed method
to estimate the reachable set is not only an essential part
in obtaining an inverse. Estimating the reachable set also
enables to formulate the inverse model learning in an integral
formulation, which showed to further increase the accuracy.

With the proposed active exploration strategy, which is
based on maximizing a lower bound on real fill-distance, the
necessary data to learn a forward model that is useful to
learn the inverse could efficiently be generated in the high
dimensional control input space.

Despite the fact that it is unrealistic to assume that the
true forward model comes from the same RKHS as induced
by the chosen kernel and its hyperparameters, in practice,
the assumptions of our theoretical derivation are reasonably
well fulfilled, implying that the derived bounds are actually
useful in practice, can be computed easily and are tight.

Although the framework has been evaluated for control of
musculoskeletal systems, it is a general method that can be
applied to other inverse model learning settings as well. Since
the learned inverse model provides an estimate of its perfor-
mance, one could also embed our method into approaches
that learn multiple paired forward-inverse models.
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