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Deep Visual Heuristics: Learning Feasibility of Mixed-Integer Programs
for Manipulation Planning

Danny Driess Ozgur Oguz Jung-Su Ha Marc Toussaint

Abstract— In this paper, we propose a deep neural network
that predicts the feasibility of a mixed-integer program from
visual input for robot manipulation planning. Integrating learn-
ing into task and motion planning is challenging, since it is
unclear how the scene and goals can be encoded as input to
the learning algorithm in a way that enables to generalize over
a variety of tasks in environments with changing numbers of
objects and goals. To achieve this, we propose to encode the
scene and the target object directly in the image space.

Our experiments show that our proposed network generalizes
to scenes with multiple objects, although during training only
two objects are present at the same time. By using the
learned network as a heuristic to guide the search over the
discrete variables of the mixed-integer program, the number of
optimization problems that have to be solved to find a feasible
solution or to detect infeasibility can greatly be reduced.

I. INTRODUCTION

In joint Task and Motion Planning (TAMP), it is common
to combine discrete search on a symbolic, logical level with
a geometric planner, which, given the discrete decisions, tries
to find motions that fulfill the requirements induced by the
high level task plan or returns that there is no feasible motion
to realize this plan. Due to the combinatorial complexity
of possible discrete decisions, a high number of geometric
problems have to be solved to find an overall feasible plan.
Indeed, for many typical TAMP problems, the majority of
the computation time is spent in trying to generate motions
or returning infeasibility of a decision [1], [2], [3], [4].

To overcome this, we seek to accelerate task and motion
planning by learning a classifier that predicts the feasibility
of the resulting geometric problem for a discrete decision.
This way, by using the classifier as a heuristic for the search
over discrete decisions, the hope is that only a very small
subset of promising motion planning problems have to be
solved to find a feasible motion.

One of the major challenges in integrating learn-
ing/experience into TAMP is the question of how the problem
setting, e.g. the objects in the scene and goals, can be
encoded as input to the learning algorithm [1], [5], [6]. Often,
machine learning methods are integrated into robotic prob-
lems for a single task only. In this case, a fixed size feature
representation might be sufficient. However, a remarkable
property of TAMP approaches is that they generalize over a
large variety of tasks in different environments with changing
numbers of objects and goals, which makes fixed sized
features not directly suitable.

In the present work, we argue that the feasibility of a
geometric problem should be decided directly in the sensor

Machine Learning and Robotics Lab, University of Stuttgart, Germany.
Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
Danny Driess is supported by the IMPRS for Intelligent Systems.

(a) Scene

(b) Depth image

(c) Object mask

Fig. 1. Generalization test scenario with 9 objects. The task is to grasp
and pick up the green box in (a). (b) and (c) show the input image to the
neural network, which is captured by the black camera in (a).

space of the robot, instead of in a feature space. The
sensor space not only has a fixed dimensionality and hence
is suitable for standard learning algorithms. The sensory
information also contains what the robot can extract from
the current world state (not taking into account history or
other priors). Therefore, this paper aims to answer the two
following questions. First, whether it is possible to learn the
feasibility of a geometric problem from sensory input like
vision. Secondly, we investigate if the learned classifier can
generalize to new problem instances that, for example, have a
varying number of objects in the scene, although the classifier
has been trained on only a small and fixed number of objects.
This is especially interesting, since, as mentioned before, the
combinatorial complexity of our world prohibits to generate
a rich enough dataset that covers sufficiently large property
combinations of multiple objects.

More specifically, we propose a deep neural network that
predicts the feasibility of mixed-integer programs, which are
one way to realize TAMP, where the discrete action (integer)
variable represents the abstract decision and the resulting
nonlinear trajectory optimization problem the geometric part.
The input to our neural network is a multi-channel image and
the discrete action. The image consists of a depth image of
the scene and object centric masks in the image space, which
enable to encode the objects that are involved in the action.
In the experiments, we consider the problem of grasping box-
shaped objects in a scene with two robot arms (Fig. 1). The
discrete actions encode how and with which robot a box
should be grasped. Infeasibility of an action can occur due
to the fact that a box is kinematically out of reach for the
chosen grasping or that other objects obstruct this action.

In our experience, feasible problems usually converge
quickly, whereas detecting infeasibility reliably takes longer.
At the same time, for the problems we considered, the major-
ity of geometric problems are actually infeasible. Therefore,
we propose two methods how the learned classifier can



guide the discrete search: On the one hand as an admissible
heuristic that cannot produce false infeasibles, but does not
reduce the number of to-be-solved optimization problems for
an infeasible problem. On the other hand as a non-admissible
heuristic that greatly reduces the number of motion planning
problems in case of an overall infeasible scene, but can
prevent finding a solution to a feasible problem. In the
experiments, we discuss the implications of both methods.
To summarize, our main contributions are:
• We propose a deep neural network that predicts the

feasibility of a mixed-integer program from visual input
for manipulation planning in a tabletop scenario.

• We show that the network generalizes to scenarios with
more objects in the scene than it has been trained on.

• We develop how to use the network to guide the discrete
search as an admissible and non-admissible heuristic.

II. RELATED WORK

A. Task and Motion Planning

Many TAMP approaches combine logic search for task
planning with sampling based motion planners [7], [8], [9],
[10] or rely on a discretization of the configuration/action
space in order to utilize constraint satisfaction methods [11],
[12], [13]. Another recent method for TAMP is so-called
Logic Geometric Programming (LGP) [2], an optimization
based approach where the logic imposes a skeleton of active
constraints on a nonlinear program, which showed to be able
to integrate physical reasoning into TAMP [14], [15]. Our
mixed-integer approach to TAMP is a simplified version of
this formulation and uses the same solver as in [2].

B. Mixed-Integer Programs in Robotics

Mixed-integer programs play an important role in robotics
to formalize the hybrid nature of contacts and interaction
modes [16], [17]. The aforementioned LGP [2] can also be
understood as a generalization of a mixed-integer program
in the context of TAMP. One major problem with such for-
mulations is the combinatorial complexity that is introduced
through the discrete variables. Hogan et al. [16] try to solve
this problem by learning a classifier that predicts the integer
assignments of hybrid MPC for planar pushing of the same
object. There is no generalization to different scenarios.

C. Learning to Plan

Advances in deep neural networks have enabled to create
learning systems that plan from (raw) sensory input such as
images. One line of research focuses on learning compact
representations suitable for planning or control directly from
raw sensory inputs [18], [19], [20], [21], [22], [23], [24]. The
compactness of the learned representation enables to utilize
reinforcement learning or local planners efficiently.

Another approach to planning from raw sensory input is
to learn an action conditioned predictive model [25], [26],
[27], [28], [29]. Here the main idea is that the learned model
predicts the future state of the environment in the sensor
space after an action has been taken. This way, planning can
be performed by imagining the outcome of an action.

The major difference of these approaches to our work is
that they attempt to learn low level actions for similar tasks,

while we are interested in accelerating the search over high
level decisions for a mixed-integer program, generalizing to
scenes with different numbers of objects.

D. Learning for Task and Motion Planning

Integrating learning as a heuristic has the potential to
greatly speed up the discrete search in TAMP [1], [30],
[31], [5]. As mentioned in the introduction, finding the right
encoding of the scene and goals is challenging if similar
generalization capabilities of TAMP are desired. For exam-
ple, [5] propose so-called score-spaces to compare problem
instances to reuse experience to guide TAMP.

Similarly to the methods of the last subsection, in [32] a
predictive model of a box-stacking scenario is learned that
can be utilized for planning sequences of high level actions
directly in the image space. However, a main limitation of
their work is that the scene always contains the same four
objects with the same colors, which allows them to have
separate actions for each object. We aim at a more general
formulation that is not restricted to a predefined number of
objects, however, we do not consider action sequences.

The work of Wells et al. [1] is most closely related to
our work. They propose to learn a classifier that predicts
the feasibility of finding a motion path (via RRT) to a prism
that should be grasped. The input to the classifier is a feature
representation of exactly two objects in the environment (size
and relative position). A major contribution of their approach
is the generalization to new environments by approximating
all objects with prisms and performing pair-wise feasibility
checks between all objects. In contrast, our proposed clas-
sifier can directly be evaluated on multiple objects simulta-
neously. Furthermore, we consider also rotated objects and
the classifier has to learn reachability for two robot arms. In
the experimental section, we compare our image space based
approach with the feature based approach of [1].

Since in the experiments we consider grasping, there are
connections to Dex-Net [33] or others [34]. Dex-Net [33]
aims at learning the probability of success for grasping
from a depth image. On the one hand, their approach is
more general, since they consider grasping arbitrarily shaped
objects. On the other hand, our approach is more general,
since Dex-Net neither considers reachability of objects nor
is able to directly handle other objects in the vicinity of the
object that should be grasped. Furthermore, our approach
takes 12 different graspings from different sides into account.
In [34], object target masks are used, similar to our work.

To our knowledge, the present work is the first that learns
the feasibility of a mixed-integer program within TAMP from
scene images, while being able to generalize to multiple
objects in the scene.

III. MIXED-INTEGER PROGRAM FOR ROBOT
TRAJECTORY PLANNING

We start by describing the trajectory optimization frame-
work for which we want to predict its feasibility. Let X ⊂
Rn×SE(3)nO be the configuration space of all objects and
articulated structures (e.g. robot arms) in the scene S with
initial condition x̃0. The goal is to find a path x : [0, T ]→ X ,



depth image

object mask

input image I

200 x 100 x 2

scene S

action-object tuple
(a,O) ∈ AO(S)

CNN

action
a ∈ A

one-hot
action

encoding

multi-layer
fully connected

σ f(I, a)

Fig. 2. Proposed neural network architecture to predict the feasibility of an action-object tuple (a,O) ∈ AO(S) in the scene S.

x ∈ C2 in the configuration space that minimizes

P (S,O) = min
x:[0,T ]→X

a∈A

∫ T

0

c(t, x(t), ẋ(t), ẍ(t), a, O) dt (1a)

s.t. x(0) = x̃0 (1b)
∀t∈[0,T ] : h(t, x(t), ẋ(t), a, O) = 0 (1c)
∀t∈[0,T ] : g(t, x(t), ẋ(t), a, O) ≤ 0 (1d)

(a,O) ∈ AO(S). (1e)

The costs c, equality constraints h and inequality constraints
g are parameterized by an action-object tuple (a,O) ∈
AO(S) ⊂ A × O(S), where a ∈ A is a discrete action
variable of the categorical set A and O(S) are the objects
in the scene S. The set AO(S) contains all possible action-
object combinations. Note that it is straightforward to gen-
eralize this formulation to actions that involve more than
one object, but since in the experiments we only consider
actions involving a single object like grasping, we simplify
the description to action-object pairs. Of course, the scene
could still contain multiple additional objects.

When fixing a specific action-object tuple (a,O), the
constraints h, g are smooth functions in x, ẋ, yielding a
remaining smooth nonlinear program (NLP), which we de-
note by P (S, a,O). Ideally, formulating the problem as a
mixed-integer program is realized in a way that renders the
resulting NLP P (S, a,O) for fixed discrete variables solvable
with (local) iterative constrained optimization methods such
as augmented Lagrangian or interior point methods. In the
context of TAMP, the action-object tuple (a,O) assignment
corresponds to a decision on the symbolic level, the resulting
NLP P (S, a,O) is the geometric planner that tries to opti-
mize a motion that fulfills the requirements induced by the
action-object tuple. For example, a could be the decision
that a certain robot arm should grasp an object O. The
NLP P (S, a,O) then attempts to optimize a collision free
trajectory such that the robot grasps the object with a certain
strategy imposed by a.

For a specific action-object tuple in the scene S, we define
the feasible set of (1) as

FS(a,O) =
{
x ∈ C2([0, T ],X ) : (1b), (1c), (1d)

}
. (2)

Feasibility of the specific NLP P (S, a,O) is expressed by
the function

FS(a,O) =

{
0 if FS(a,O) = ∅
1 otherwise

, (3)

whereas the complete scene S with target object O is
considered feasible, if there exists at least one feasible action

F (S,O) =

{
0 if ∀a∈A : FS(a,O) = 0

1 if ∃a∈A : FS(a,O) = 1
. (4)

Note that feasibility as defined here is a property of the
nonlinear program. However, in practice, the ground truth
feasibility is determined by whether the numerical optimizer
finds a feasible solution, which is not always the case for a
feasible problem, since it is, even after introducing the dis-
crete variables, still non-convex. We use the same augmented
Lagrangian trajectory optimization method as in [2] to solve
the NLP for a fixed discrete action. Indeed, a generalized
version of the trajectory optimization framework of the
present work is so-called Logic Geometric Programming [2],
where a sequence of action-object tuples is considered.

IV. DEEP VISUAL HEURISTICS

The goal of the present work is to learn a classifier f that
predicts the feasibility of the nonlinear program P (S, a,O)
for an action-object tuple (a,O) ∈ AO(S) in the scene S,
i.e. f should approximate FS(a,O) as defined in (3) for (1).

In order to realize this, the question is how the scene S, the
action a ∈ A as well as the object O ∈ O(S) that is involved
in the action can be encoded as input to the classifier in a
way that not only enables to learn an accurate classifier, but
also generalizes to new scenes with, for example, changing
numbers of objects. As mentioned in the introduction, we
argue that the sensor space, in this case vision, has the
potential to fulfill these requirements, while being a fixed size
input. Formally, we assume that there is a generative process
that produces a depth image Idepth ∈ Rw×h from the scene
S, either via a rendering engine in simulation or a depth
camera in the real world. Since feasibility of the problems we
consider mainly depends on geometric information, a depth
image is a natural choice. If there are multiple objects in
the scene, a crucial question is how the target object O of
an action a is encoded, since a depth image alone would
show all objects. Separating the object from the action is
also important if the classifier should generalize to scenes
with different objects.

The idea is to add a binary mask Imask ∈ {0, 1}w×h of the
target object as a second image to the input of the classifier
in the same image space as Idepth. This way, an attention
mechanism to the target object is created and the actions are
separately represented from the concrete object. The object
mask alone, however, would also not be sufficient, since the



feasibility of an action-object pair (a,O) can depend on other
objects in the scene or on the exact shape (like height) of
the target object, which is not provided by the mask alone,
but through the depth image. Being able to generate such
object masks is a reasonable assumption, since there are
many methods dealing with this task (e.g. [35]).

Therefore, the input to the classifier f(I, a) is the action
a ∈ A and the stacking of Idepth and Imask as the two channel
image I = I(S,O) ∈ Rw×h×2, which itself is a function of
the scene S and the involved object O. Fig. 1 visualizes
these two input images. We parameterize f(I, a) as a deep
neural network, whose architecture is illustrated in Fig. 2.
The network is trained to approximate the probability that
the action-object pair (a,O) in the scene S is feasible

f(I(S,O), a) = p(FS(a,O) = 1 | I(S,O), a) (5)

on the standard weighted binary cross-entropy loss

L(w) = −
∑

(S,O,I)∈D

∑
a∈A

η FS(a,O) log(f(I, a;w))

+ (1− FS(a,O)) log(1− f(I, a;w)). (6)

The training data D = {(Si, Oi, I(Si, Oi))}di=1 consists of
scenes Si with target objects Oi. All actions are taken into
account in the loss (6) for each scene-object sample. Since
in our experiments the majority of actions is infeasible, the
weighting factor η ≥ 1 in (6) turned out to be very important
to balance the loss, otherwise the network could achieve high
accuracies by always predicting infeasibility. If the prediction
f(I(S,O), a) > β is higher than the feasibility threshold
β > 0, the network decides that FS(a,O) = 1. In the
experiments, we discuss the influence of this threshold.

The specific network architecture used in the experiments
is as follows. The CNN part are two convolutional layers
with a filter size of 5 x 5, followed by max-pooling of
size 2 and stride 2. The first convolution layer has 5 filters,
the second one 10. The output of the CNN is flattened
and passed through a fully connected layer to produce a
feature size of 500. The action encoder consists of two
fully connected layers with a final feature size of 500. Both
features are concatenated and passed through one additional
fully connected layer with size 100, before the final linear
layer with one sigmoid output. All hidden layer use ReLUs.

V. GUIDING MOTION PLANNING USING LEARNED
VISUAL HEURISTICS

The learned classifier (5) can be utilized not only to predict
the feasibility of a given action-object tuple in a scene, but
also to guide the optimization of the mixed-integer program
(1) as a heuristic, since it outputs a feasibility probability.
The goal of this heuristic is to solve P (S,O), i.e. to find an
action a ∈ A for a scene S and a target object O ∈ O(S)
such that the NLP P (S, a,O) is feasible or return that the
complete scene is infeasible F (S,O) = 0, while reducing the
number of NLPs that have to be solved as much as possible.

A. Admissible Heuristic
One way is to use the classifier as an admissible heuristic.

Admissible in this context denotes that classification errors
cannot prevent finding a solution to a feasible problem

P (S,O). This is realized by first evaluating f(I, a) = pa for
all a ∈ A. Then first the NLP P (S, a,O) with the highest
predicted feasibility pa is solved. If it is feasible, a solution
is found, if not, the next largest pa is chosen and so on. This
implies that for a feasible problem, only one NLP would
have to be solved for a perfect classifier. However, for an
infeasible problem, i.e. a problem where none of the action
choices lead to a feasible NLP (F (S,O) = 0), all actions
would be tested and one therefore does not gain anything
when using the learned network as an admissible heuristic.

B. Non-Admissible Heuristic
As mentioned in the introduction, in our experience, many

actions or even the complete scene is infeasible. In addition,
it takes usually more time for the optimizer to detect infea-
sibility than to solve a feasible problem. Therefore, we also
propose how the learned classifier can be used in a way that
enables to detect infeasibility of a scene very quickly, hence
being able to save a lot of computation time. The principal
algorithm is the same as in the case of an admissible heuristic
(see last section). However, the network predicts that the
scene S with target object O is infeasible, i.e. F (S,O) = 0,
if it holds for the remaining actions A′ = A\{a1, . . . , aj}
after having tested the actions a1, . . . , aj that

max
a∈A′

f(I(S,O), a) < β (7)

with the feasibility threshold 0 < β < 1. Therefore, if, for
example, the highest predicted probability of all actions is be-
low this threshold, not a single NLP has to be solved to detect
infeasibility of the scene. Of course, in this case classification
errors can lead to a situation where a feasible action is not
evaluated and therefore the scene is erroneously classified
as infeasible (false infeasible rate). In the experiments, we
evaluate and discuss the false infeasible rate and the savings
with respect to the feasibility threshold. For β = 0, this
method becomes equivalent to the admissible heuristic of
Sec. V-A.

VI. EXPERIMENTS

We demonstrate our approach on the problem of grasping
box-shaped objects with two robot arms that have parallel
grippers. Fig. 1 shows a typical scene, where the task is to
grasp the green box. To model grasping box-shaped objects
as a mixed-integer program, the 6 faces of a box introduce 6
fundamentally different ways, i.e. integer assignments or ac-
tions a, how a parallel gripper can grasp the box, in the sense
that the solution sets are not connected without violating
the constraints during a transition (re-grasping). Furthermore,
for each of the 6 faces we additionally have 4 alignment
constraints of the end-effector orthogonally to a chosen face.
The optimizer still has two degrees of freedom to choose the
exact grasping location. Since in the experiments we only
consider objects on a table, we can exclude grasping actions
where the gripper would always collide with the table, which
leaves 12 different actions for one robot arm, i.e. 24 in total.
Fig. 3 visualizes these 12 grasping actions, where one can
also see the remaining degrees of freedom. The path costs
in (1) are squared accelerations and there are collision and
joint limit inequality constraints.



Fig. 3. Visualization of the 12 different discrete grasping actions for one robot arm for which the feasibility for a target object should be predicted.

A. One Object

We first consider scenes with only one object.
1) Training and Test Data Generation: The training data

consists of 19278 scenes where the position of the box, its
rotation and size are chosen on a grid. Furthermore, Gaussian
noise is added to all of those parameters. 11.2% of the
462672 actions in total were feasible, 88.8% infeasible. This
imbalance imposes a challenge to the learning algorithm.
To account for this imbalance in the training dataset, we
use η = 10.0. The network is trained with the ADAM
optimizer (learning rate 0.0005, batch size 10). We generate
two different test datasets consisting of 3672 scenes each.
The first one, test data 1, uses the same grid points as for
the training data, but a different random seed. Test data 2
is generated by uniformly sampling the parameters of the
box (position, rotation, size). About half of the test scenes
are completely infeasible, the feasible-infeasible ratio of all
actions is approximately 11% to 89%.

2) Accuracy and Saved NLPs: Tab. I lists the results for
both test datasets. Looking at the true feasible and true infea-
sible rate over all actions, choosing η = 10.0, the network not
only resolves the imbalance in the training data, but is also
biased towards a low false infeasible rate, which allows us to
use the network as a non-admissible heuristic. Depending on
the feasibility threshold, a true feasible accuracy of over 98%
and over 91% true infeasible one can be achieved, even for
the off-distribution test data 2. When using the network to
guide the search as discussed in Sec. V, the network reduces
the number of to-be-solved NLPs to find a feasible solution
by a factor of 4.8 compared to random selection. Indeed,
only 1.1 NLPs on average have to be solved for a feasible
problem, which is very close to the optimum of 1. Also
note the very large standard deviation for random selection
compared to the low one with the learned classifier. As one
can see in Fig. 4a, by adjusting the feasibility threshold β,
a low false infeasible rate can be achieved while still being
able to detect infeasibility very quickly, e.g. speedup of 48
with false infeasible rate of 0.3%, which justifies the use of
the network as a non-admissible heuristic.

B. Comparison to Feature-Based Approach

Here we compare to an SVM based approach similar to [1]
with features instead of images as input. As in [1], a separate
SVM for each of the 24 actions is trained with LIBSVM
[36]. The input is a 6 dimensional vector containing the
x, y position, the rotation and the size of the box. The test
and training scenes are the same as for the neural network.
Due to the imbalanced dataset, like for the neural network, a
weighting in the loss of the SVM is necessary, otherwise it

0.2 0.4 0.6

0

0.5

1

feasibility threshold β

#
of

so
lv

ed
N

L
Ps

/
sc

en
e

on feasible

on infeasible 0

0.5

1

1.5

2

fa
ls

e
in

fe
as

ib
le

ra
te

[%
]

(a) Number of solved NLPs

0.2 0.4 0.6

0.8

0.85

0.9

0.95

1

feasibility threshold β

ac
cu

ra
cy

[%
]

true feasible rate

true infeasible rate

(b) Accuracy on all actions

Fig. 4. Test data 2 evaluation. (a) shows the number of NLPs necessary
to find a feasible solution or to detect infeasibility.

performed extremely poorly. For a fair comparison, we spent
a decent amount of time to tune the parameters of the SVM.
As one can see in Tab. I, an SVM feature based approach
is competitive with respect to the accuracies on all actions,
although our network performs slightly better. However, if
one considers the number of solved NLPs, one can see that
using the SVM as an admissible heuristic takes nearly twice
the amount of NLPs to find a feasible solution or 1.6 times
more in the non-admissible case. If β = 0.1 for the network,
the SVM has a 15 times higher false infeasible rate for the
off-distribution test data 2, although the network still requires
less NLPs to detect infeasibility. Therefore, our approach in
image space is significantly better in this case. Although we
focus on grasping boxes in this work, another advantage of
image based approaches is that they could be utilized for
arbitrarily shaped object, which is not obvious for a feature-
based approach that relies on a specific parameterization of
the object shape.

C. Multiple Objects
Now we consider scenarios where there are additional

objects in the scene which might or not obstruct a certain
grasping action. As mentioned in the introduction, it is not re-
alizable to generate a rich enough dataset with combinations
of different numbers of additional objects with different sizes
and positions. Therefore, we generate a training dataset with
only one additional object, again box-shaped. Half of the
scenarios are generated by randomly sampling the position
and orientation of the second box. For the other half, the
second box is randomly positioned in the vicinity around
the first object that should be grasped. This way, we ensure
that the dataset contains enough samples where the presence
of the second object actually creates additional infeasibilities.
The size of the second object is always uniformly sampled.
In total, the training data contains 22490 scenes, again only
10% of all actions are feasible.

1) Generalization to more than Two Objects: To test the
generalization capabilities of our network, we test on scenes



TABLE I ACCURACIES ON ALL ACTIONS AND NUMBER OF SOLVED NLPS PER SCENE FOR SCENARIOS WITH A SINGLE OBJECT. TRUE (IN)FEASIBLE

MEANS CLASSIFYING AN (IN)FEASIBLE ACTION AS (IN)FEASIBLE. FALSE INFEASIBLE MEANS CLASSIFYING A FEASIBLE SCENE AS INFEASIBLE.

accuracy on all actions number of solved NLPs per problem instance

true feas. true infeas. on feasible problems on infeasible problems false infeas.
(scenes)β random admissible non-admissible random admissible non-admissible

test
data

1

DVH 0.05 99.9% 79.2% 5.1±4.4 1.1±0.6 1.1±0.6 24 24 1.0±2.7 0.1%
DVH 0.1 99.7% 83.1% 5.1±4.4 1.1±0.6 1.1±0.6 24 24 0.8±2.2 0.2%
DVH 0.2 99.5% 86.9% 5.1±4.4 1.1±0.6 1.1±0.5 24 24 0.5±1.5 0.3%
DVH 0.3 99.0% 88.9% 5.1±4.4 1.1±0.6 1.1±0.5 24 24 0.4±1.3 0.6%
DVH 0.4 98.5% 90.3% 5.1±4.4 1.1±0.6 1.1±0.5 24 24 0.3±1.1 0.9%
DVH 0.5 97.3% 91.8% 5.1±4.4 1.1±0.6 1.1±0.5 24 24 0.2±0.8 1.5%

SVM 98.0% 91.6% 5.1±4.4 1.9±1.8 1.8±1.2 24 24 0.9±2.0 1.7%

test
data

2

DVH 0.05 99.8% 80.1% 5.3±4.7 1.1±0.5 1.1±0.5 24 24 1.2±2.7 0.1%
DVH 0.1 99.6% 84.1% 5.3±4.7 1.1±0.5 1.1±0.4 24 24 0.8±2.1 0.2%
DVH 0.2 99.1% 87.9% 5.3±4.7 1.1±0.5 1.1±0.4 24 24 0.5±1.5 0.3%
DVH 0.3 98.8% 89.8% 5.3±4.7 1.1±0.5 1.1±0.4 24 24 0.4±1.3 0.5%
DVH 0.4 98.3% 91.2% 5.3±4.7 1.1±0.5 1.1±0.4 24 24 0.3±1.1 0.7%
DVH 0.5 97.3% 92.6% 5.3±4.7 1.1±0.5 1.1±0.4 24 24 0.3±0.9 1.0%

SVM 96.6% 91.5% 5.3±4.7 2.1±2.3 1.8±1.2 24 24 0.9± 2.0 3.0%
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Fig. 5. Generalization to multiple objects. Blue 1, orange 2, green 5 and
red 8 additional objects to the one that should be grasped.

that contain 1 (as in training), 2, 5 and 8 additional objects
to the target box in the scene. Fig. 5 shows the accuracy and
number of solved NLPs. As one can see, although the false
infeasible rate and also the number of NLPs required to de-
tect infeasibility is slightly higher with an increasing number
of additional objects, the network is still very accurate and
a useful heuristic. Finding a feasible solution is even nearly
independent on the number of additional objects, which is
remarkable. As a sanity check, if 7 of the 8 additional objects
are in the scene but not rendered, the true infeasible rate
drops by 8% and about twice as much NLPs have to be
solved to detect infeasibility of an infeasible scene in the non-
admissible case. Therefore, it really generalizes. However,
comparing the results to the case of a single object only, one
can see that the false infeasible rate on the complete scene
is higher when the network is trained or tested on multiple
objects. Still, the value is low enough to justify using it as
a non-admissible heuristic. As a side note, if the network is
trained only on a single object as in the previous section, then
the predictions get totally confused if an additional object
is placed in the scene (70% false infeasibles). Therefore,
training with at least one additional object is necessary.

2) Cylinder-shaped Object: Although the training data set
only consists of box-shaped objects, we were interested what
happens if shapes other than boxes are present in the scene.
We generate 2000 test scenes where cylinders of different
sizes (height, radius) are placed together with the box that
should be grasped. 983 scenes contain at least one feasible
action, 1017 are completely infeasible, because either the
cylinder prevents grasping the box or the box is out of reach.

For a feasibility threshold of 0.5, the true feasible accuracy
is 98.3%, the true infeasible rate is 89.4%. To show that
this is not a statistical effect of the test data distribution, we
generated the same test data, but this time the cylinder is not
rendered in the depth image, although present in the scene.
Depending on the feasibility threshold, the true infeasible
rate drops between 2 and 3%. Hence, the network can
generalize to cylinders to some extend. More importantly, the
network does not get confused if other shapes are present.

D. Runtime Improvements
So far, we have focused on how many NLPs have to be

solved to find an overall feasible solution or decide that the
complete scene is infeasible, since this is a metric that is in-
variant to the concrete solver implementation or its stopping
criteria. For a typical feasible action, solving one NLP takes
between 0.5 and 1.1 seconds. For an infeasible action, it can
take up to 17 seconds, which means a significant runtime
improvement in the non-admissible case. Querying the SVMs
for all actions takes about 5 ms, the network 2 ms on GPU
(10 ms on CPU), again for all actions, including computing
the image feature encoding. Compared to solving an NLP, the
querying times of the network and the SVM are neglectable.

VII. CONCLUSION

In the present work, we have shown that it is possible to
predict the feasibility of a mixed-integer program from visual
input with high accuracy. Although being trained on only two
objects present at the same time in the scene, the network
generalizes to multiple additional objects and still achieves a
high accuracy and significantly reduces the number of NLPs
that have to be solved to find a feasible solution to the mixed-
integer program. The object mask is a crucial component of
the system to allow this generalization to multiple objects.

While an SVM based approach with geometric features
as input is competitive in the accuracy of the classifier, it
performed inferior as a heuristic to guide the search and
therefore saved about twice less NLPs than our proposed
method in the image space. Furthermore, this feature based
approach cannot directly generalize to multiple objects.

One limitation of our work is that the considered scenes
in the experiments have to be captured well through visual
input without occlusions or other ambiguities.
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